
The most common type of driver uses a lightweight diaphragm or cone connected to a rigid basket, or frame, via flexible suspension that constrains a coil of fine wire to move axially through a cylindrical magnetic gap. When an electrical signal is applied to the voice coil, a magnetic field is created by the electric current in the voice coil which thus becomes an electromagnet field. The coil and the driver's magnetic system interact, generating a mechanical force which causes the coil, and so the attached cone, to move back and forth and so reproduce sound under the control of the applied electrical signal coming from the amplifier. The following is a description of the individual components of this type of loudspeaker.
The diaphragm is usually manufactured with a cone or dome shaped profile. A variety of different materials may be used, but the most common are paper, plastic and metal. The ideal material would be stiff (to prevent uncontrolled cone motions), light (to minimize starting force requirements) and well damped (to reduce vibrations continuing after the signal has stopped). In practice, all three of these criteria cannot be met simultaneously using existing materials, and thus driver design involves tradeoffs. For example, paper is light and typically well damped, but not stiff; metal can be made stiff and light, but it is not usually well damped; plastic can be light, but typically the stiffer it is made, the less well-damped it is. As a result, many cones are made of some sort of composite material. This can be a matrix of fibers including Kevlar or fiberglass, a layered or bonded sandwich construction, or simply a coating applied to stiffen or damp a cone.
The basket or frame must be designed for rigidity to avoid deformation, which will change the magnetic conditions in the magnet gap, and could even cause the voice coil to rub against the walls of the magnetic gap. Baskets are typically cast or stamped metal, although molded plastic baskets are becoming common, especially for inexpensive drivers. The frame also plays a considerable role in conducting heat away from the coil.
The suspension system keeps the coil centered in the gap and provides a restoring force to make the speaker cone return to a neutral position after moving. A typical suspension system consists of two parts: the "spider", which connects the diaphragm or voice coil to the frame and provides the majority of the restoring force; and the "surround", which helps center the coil/cone assembly and allows free pistonic motion aligned with the magnetic gap. The spider is usually made of a corrugated fabric disk, generally with a coating of a material intended to improve mechanical properties. The name "spider" derives from the shape of early suspensions, which were two concentric rings of bakelite material, joined by six or eight curved "legs". Variations of this topology included adding a felt disc to provide a barrier to particles that might otherwise cause the voice coil to rub. Another German company currently offers a spider made of wood. The surround can be a roll of rubber or foam, or a ring of corrugated fabric (often coated), attached to the outer circumference of the cone and to the frame. The choice of suspension materials affects driver lifetime, especially in the case of foam surrounds which are susceptible to aging and environmental damage.
The wire in a voice coil is usually made of copper, though aluminium, and rarely silver, may be used. Voice coil wire cross sections can be circular, rectangular, or hexagonal, giving varying amounts of wire volume coverage in the magnetic gap space. The coil is oriented coaxially inside the gap, a small circular volume (a hole, slot, or groove) in the magnetic structure within which it can move back and forth. The gap establishes a concentrated magnetic field between the two poles of a permanent magnet; the outside of the gap being one pole and the center post (a.k.a., the pole-piece) being the other. The pole piece and backplate are often a single piece called the poleplate or yoke
No comments:
Post a Comment