Thursday, July 2, 2009

conclusions

Analysis

Our prototype traction control system demonstrates how a high speed microcontroller can be used to accurately control a varying and possibly unstable system. Our controller effectively throttled wheel speed when a slip was detected as well as actively controlled wheel rotation to maintain the desired speed. Although our results demonstrated the functioning of our code, we originally hoped for a faster response ideally being able to correct wheel slip within one rotation. The slow response was mainly caused by adjusting the PWM pulses by 1% each time a measurement was recorded. We sacrificed a fast responding system for a more stable one. This is always a careful balance to choose for many engineering problems. The addition of higher accuracy encoders as well as implementing a more sophisticated control algorithm would help us achieve more desirable results. Due to our implementation of a four wheel, independent drive system, our project would require some significant overhead to be integrated with other commercial vehicle stability systems such as ABS (anti-lock breaking system) and ESC (electronic stability control) systems. This again was a trade-off as integrating with the various automotive communication standards and devices would in itself be a substantial design project.

Standards and Intellectual Property

Our project did not require the use of any public or private domain software or any proprietary hardware. Although our specific implementation of a traction control system itself would not be sufficient for a patent, it does serve as a strong baseline for further development on traction control. Traction control itself is a fairly new technology and is just now becoming main-stream in consumer automobiles. There is certainly substantial opportunity for improvement to the current algorithms and systems used today, especially if the focus is moved to include performance (most traction control systems are for safety only and can negatively affect performance).

Ethics

During the design of our traction control system we had to keep in mind the use of such systems and the ethical responsibilities of design. Most traction control systems are used on consumer motor vehicles as a safety system. Our system, as well as commercial grade systems, has the ability to over-ride driver control. A malfunction of this system could significantly compromise the safety of the passengers as well as others on the road. Even if the system was not used on a passenger vehicle, it is still partially or wholly responsible for the movement of a potentially dangerous object. Therefore during our design we constantly had to keep safety in mind and try to design such that failures are minimized and will not result in an out of control vehicle. This was reflected in our decision to keep the less aggressive method of throttling up wheel speed and using small accepted margins of error. This means that our model car’s acceleration was significantly less than the motors where capable of doing, but the slower accelerating vehicle would have better slip protection favoring safety over performance.

No comments:

Post a Comment