Thursday, July 2, 2009

results



In general, the end result of our traction control was a success. The vehicle was able to ramp up its velocity uniformly without any major slipping. When the vehicle reached its desired speed, the wheels maintained their velocity and generally stayed in balance with each other. In order to test that out system was working, we performed two tests. First, we placed tightly fitting rubber bands around the outside rims of the left two wheels and kept the plastic wheels on the right side unmodified. We then started up the vehicle in the hallway on hard tile flooring. As the car started up, the velocity of each wheel was maintained a constant rate and the car moved in a relatively straight path for about 2 meters.

The results of the start-up can be seen in the plot below. When the car first starts, wheel number 4, shown in turquoise, is established as the fastest wheel and wheel number 3, shown in red is the slowest wheel. Almost immediately, wheel 4 jumps up to 14 rpm and is promptly slowed to run at the same speed as the other wheels. The wheels continue to pick up speed, until they reach a programmed desired speed. It is held at this speed for a few seconds. Looking at the region between 3 and 7 seconds, wheel number 2 naturally tries to run at a speed faster than desired. This is recognized by the microcontroller and the PWM is adjusted to make the wheel run slower. The reverse is true for wheel 3 and the microcontroller sends more power to the motor to account for this.

The second test involved pushing down on a single wheel and slowing it down to a very low velocity. The system would pass this test if the other wheels recognized that they were rotating too quickly and slowed down appropriately. The results of this test are also shown in the graph below. At about 7 seconds, the second wheel is held down and its velocity drops to about 6 rpm. The response of the other wheels 1 and 3 is pretty fast and responds to the velocity change within a couple of measurement cycles. Wheel 4 was the slowest to respond to the change, taking less than 1 second. Although there is a fast response time to the velocity change, the time it takes to actually slow the other wheels to the slowest level takes a very long time. As shown in the graph, it takes well above 2 seconds for the other wheels to drop down to 10 rpm.

The results of our second traction control test are shown above. At about 1 second, the 4th wheel is held down and it slows to 20 rpm. The other wheels respond in about the same manner as the first test. Overall, we can see that it takes around 3 seconds to the wheels to completely adjust to a large change in velocity. Then, at 12 seconds the wheel is released. Since wheel 4 naturally ran the fastest of all the wheels, there was a large acceleration. The system tries to respond to the situation, but it takes over 8 seconds just for the wheels to recover about ¾ of the velocity difference. This was a worst case scenario for our traction control system.

No comments:

Post a Comment