Thursday, July 2, 2009

High Level Design


An electronic limited slip differential system controls the rotational velocity of the output shafts of a vehicle using speed sensors, anti-lock brakes, and microcontrollers. By electronically monitoring slipping, the microcontroller can activate the anti-lock brakes to slow down the wheel that is moving too quickly. An electronic system has the ability to be adjusted for different applications or conditions, such as on and off-road terrain, slippery weather, or driving at different speeds. This makes it much more attractive than a mechanical system. While the dynamics of modern day traction control systems are very complex, the basic idea motivated our project. The applications for this design are very practical and universal. Any vehicle with two or more wheels will benefit from greater stability and movement control with our traction control system.

The main component of our traction control system is a feedback loop that adjusts the velocity of each individual wheel to the velocity of the slowest wheel on the vehicle. It contains both positive and negative feedback by slowing down the fastest wheel motor and speeding up the slowest. A basic schematic of our system is shown in Figure 1. This block diagram is implemented four times in software for each wheel.

Logical Structure

This is a basic block diagram of our traction control system. The Mega644 microcontroller was used to generate four PWM signals to be sent to the H-Bridges and to read the rotary encoder signals. Electrical connections are shown in blue and mechanical connections are shown in red. Inputs to the microcontroller are labeled as PINxn and outputs are labeled as PORTxn. OCRnx are the PWM output registers that control the motor speed. This diagram is explained in detail in the software and hardware design sections of the report.

No comments:

Post a Comment